BINARY DIGITS

Because we have ten fingers we use a number system based on 10. We call it decimals or Hundreds, Ten and Ones. (If spiders could count they would probably use base 8!)

For example, the number 368 means $\mathbf{3}$ times 100 plus $\mathbf{6}$ times $\mathbf{1 0}$ plus $\mathbf{8}$ times $\mathbf{1}$

100	10	1
3	6	8

There is a number system based on 2. Numbers written in base 2 are called binary digits. They contain ones and zeros and nothing else. Instead of 1, 10, 100, 1000 we use 1, 2, 4, 8,16 , etc.

Take the number 26 (in base 10). In binary we would write this as 11010, because we can get 26 using $\mathbf{1}$ times $\mathbf{1 6}$ plus $\mathbf{1}$ times $\mathbf{8}$ plus $\mathbf{0}$ times $\mathbf{4}$ plus $\mathbf{1}$ times $\mathbf{2}$ plus $\mathbf{0}$ times $\mathbf{1}$

$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
1	1	0	1	0

Action

- Write the numbers $14,24,11$ and 15 using binary digits
- Convert the binary numbers 11101, 11000, 110 and 11111 into decimals
- Try to write the numbers 83,197 and 128 in binary digits
- Write the number that appears on your front door in binary digits
- Print off and cut out the card-matching task on the next page.
- Match 'em up!

FACT OF THE DAY: The phrase binary digit shortens to BIT (Binary digIT). Eight bits make a byte. A million bytes make 1 Megabyte. (Ever heard of Megabytes..?)

74	14	1100011	110110
108	33	1000001	100001
127	100	1111111	1100100
65	76	1001010	1001100
99	54	1101100	1110

